Chapter 1 Introduction to VLSI Testing

超大型積體電路測試簡介
趙家佐
Goal of this Lecture

- Understand the process of testing
- Familiar with terms used in testing
- View testing as a problem of economics
Introduction to IC Testing

- Introduction
- Types of IC testing
- Manufacturing tests
- Test quality and economy
- Test industry
In chip production, every chip will be manufactured and tested.

A chip is shipped to customers, if it works according to specification.
Tasks of IC Design Phases

- **Specification**
 - Function and performance requirements
 - Die size estimation
 - Power analysis
 - Early IO assignment

- **Architecture Design**
 - High-Level Description Block diagrams
 - IP/Cores selection (mapped to a platform)
 - SW/HW partition/designs

- **Chip Design**
 - Logic synthesis
 - Timing verification
 - Placement, route and layout
 - Physical synthesis
 - Test development and plan

- **Fabrication**

- **Test**
 - First silicon debug
 - Characterization
 - Production tests
Objectives of VLSI Testing

- Exercise the system and analyze the response to ascertain whether it behaves correctly after manufacturing
- Test objectives
 - Ensure product quality
 - Diagnosis & repair
- All considered under the constraints of economics
Test Challenges

- Test time exploded for exhaustive testing
 - For a combinational circuit with 50 inputs, we need
 \[2^{50} = 1.126 \times 10^{15} \text{ patterns} = 1.125 \times 10^8 \text{s} = 3.57 \text{yrs.} \]
 \[(10^{-7} \text{s/pattern}) \]
 - Combinational circuit = circuit without memory

Too many input pins \(\rightarrow\) too many input patterns
More Challenges

- High automatic test equipment (ATE) cost for functional tests
- Testing circuits with high clock rates
- Deep sub-micron/nano effects
 - Crosstalk, power, leakage, lithography, high vth variation…
- Test power > design power
- Integration of analog/digital/memories
- SOC complexities
Testing Cost

- Test equipment cost
 - Analog/digital signal and measuring instrumentation
 - Test head
 - Test controller (computer & storage)
- Test development cost
 - Test planning, test program development and debug
- Testing-time cost
 - Time using the equipment to support testing
- Test personnel cost
 - Training/working
Testing Cost in Y2k

- Testing of complex IC is responsible for the second highest contribution to the total manufacturing cost (after wafer fabrication)

- 0.5-1.0GHz, analog instruments, 1024 digital pins: ATE purchase price
 - $1.2M + 1024*$3000 = $4.272M

- Running cost (5-yr linear depreciation)
 - = Depreciation + Maintenance + Operation
 - = $0.854M + $0.085M + $0.5M
 - = $1.439M/yr
Types of IC Testing (I): Audition of System Specification

- Translation of customer requirements to system specifications is **audited**.
- The specification has to be reviewed carefully throughout the design/production process.
Types of IC Testing (II): Verification

- The design is verified against the system specifications to ensure its correctness.
- Verification is an essential and integral part of the design process.
- Especially for complex designs, the time and resource for verification exceed those allocated for design.
Types of IC Testing (III): Characterization Testing

- Before production, characterization testing are used.
 - Design debug and verification.
 - Determine the characteristics of chips in silicon.
 - Setup final specifications and production tests.
Types of IC Testing (IV): Production Testing

- In production, all fabricated parts are subjected to production testing to detect process defects.
- To enforce quality requirements
 - Applied to every fabricated part
 - The test set is short but verifies all relevant specifications, i.e., high coverage of modeled faults
- Test cost and time are the main drivers.
Types of IC Testing (V): Diagnosis

- Specification
 - Failure mode analysis (FMA) is applied to failed parts.
 - To locate the cause of misbehavior after the incorrect behavior is detected.
 - Results can be used to improve the design or the manufacturing process.
 - An important step for improving chip production yield.
- Architecture Design
- Chip Design
- Fabrication
- Test
Multiple Design Cycles

1. Specification
2. Architecture Design
3. Chip Design
4. Fabrication
5. Test

Design Verification

Failure analysis
Debug and Diagnosis

Long iterations → Late time-to-market/production
A Broad View of Chip Design and Production Phases

- Design
- FAB
- Debug
- Characterization
- Re-design
- FAB
- Production test
- Diagnosis

Time to Market

Time to Yield
What Are We After in Testing?

- Design errors (first silicon debug)
 - Design rule violation
 - Incorrect mapping between levels of design
 - Inconsistent specification
- Manufacturing defects
 - Process faults/variation
 - Time-dependent failures (reliability)
 - Packaging failures
Various Design Errors

Breakdown of design errors in Pentium 4.

- Goof (12.7%) - typos, cut and paste errors, careless coding.
- Miscommunication (11.4%)
- Microarchitecture (9.3%)
- Logic/Microcode change propagation (9.3%)
- Corner cases (8%)
- Power down issues (5.7%) - clock gating.
- Documentation (4.4%)
- Complexity (3.9%)
- Random initialization (3.4%)
- Late definition of features (2.8%)
- Incorrect RTL assertions (2.8%)
- Design mistake (2.6%) - the designer misunderstood the spec

Source: Bentley, DAC2001
Methods to Find First-Silicon Bugs

- Post-silicon debug requires a lot of efforts
 - System Validation (71%).
 - Compatibility Validation (7%)
 - Debug Tools Team (6%)
 - Chipset Validation (5%)
 - Processor Architecture Team (4%)
 - Platform Design Teams and Others (7%)

Source: Intel Technology Journal Q1, 2001
Validating The Intel Pentium 4 Processor
Defect Example: Particle

Source: ITC2004, D. Mark J. Fan, Xilinx
Defect Example: Metal breaks

Source: ITC2004, D. Mark J. Fan, Xilinx
Defect Example: Bridging

Systematic Process Variations

- Metal layer of NOR3XL standard Cell
Tests Before and After Production

- (Before) Characterization Testing
 - For design debug and verification
 - Usually performed on designs prior to production
 - Verify the correctness of the design & determine exact device limits
 - Comprehensive functional, DC and AC parametric tests
 - Set final spec. and develop production tests

- (After) Production Testing
 - To enforce quality requirements
 - Applied to every fabricated parts
 - Test vectors should be as short as possible under the constraints of test costs and product quality
 - Test costs are the main drivers
Test Items for Production Testing

- Circuit probe test (CP)
 - Examine each part on the wafer before it is broken up into chips

- Final test (FT)
 - Examine each part after packaging

- Usually FT includes
 - Contact test
 - DC parameter test
 - AC parameter test
 - Functional test
 - Make sure circuits function as required by specification.
 - Consume most test resources in production.

- Burn-in test (optional)
 - Exercise chips in extreme conditions, e.g., high temperature or voltage, to screen out infant mortalities

- Speed binning (optional)
 - Determine the max speed of a chip and sell it accordingly
An Exemplary Test Flow

CP
- Objective: gross process defect
- Metric: coverage of targeted faults
- Patterns: functional / scan / BIST

FT
- Objective: process defect, package defect
- Metric: coverage of targeted faults
- Patterns: functional / scan / BIST

Burn-in
- Objective: aging defects
- Metric: toggle coverage
- Patterns: functional / scan (without comparison)

Speed binning
- Objective: performance
- Metric: speed, delay fault coverage
- Patterns: functional (mostly) / scan (rare)

Quality Assurance test
- Objective: Final quality screen
- Metric: Adhoc
- Patterns: Functional, System
Connectivity Test

- Verify whether the chip pins have opens or shorts
- Also called open/short test
- Draw current out of the device and measure voltage the input pin
- Utilize the forward bias current of the protection diodes at the pin to determine whether a short or open exists
DC Parametric Tests

- Tests performed by Parametric Measurement Unit (PMU)
- Much slower than the normal operation speed
 - Static (operating) current test
 - check the power consumption at standby (operating) mode
 - Output short current test
 - Verify that the output current drive is sustained at high and low output voltage
 - Output drive current test
 - For a specified output drive current, verify that the output voltage is maintained
AC Parametric Tests

- To ensure that value/state changes occur at the right time
- Some AC parametric tests are mainly for characterization and not for production test.
 - Test for rise and fall times of an output signal
 - Tests for setup, hold and release times
 - Tests for measuring delay times
 - E.g. tests for memory access time
Burn-in Tests

- Early failure detection reduces cost
 - Burn-in to isolate infant mortality failures

![Bathtub Curve of IC’s Failure Rate](image)

- Infant mortality period: \(~ 20 \text{ weeks}~
- Normal lifetime: \(5 \text{ – 25 yrs}~
- Wear-out period: \(\)
An Example of IC Failure Rate vs. System Operating Time With/Without Burn-in

- No burn-in
- 125°C burn-in
- 150°C burn-in

Graph showing the failure rate vs. time for different burn-in temperatures.
Functional Tests

- Selected test patterns are applied to circuits and response are analyzed for functional correctness.
Activities for Developing Functional Tests

- Generate test pattern
- Evaluate the quality of test patterns
- Design circuit with better test efficiency
- Apply test patterns
Key Issues of Functional Tests

- Where does patterns come from?
 - Design simulation patterns (Functional patterns)
 - Automatic test pattern generation (ATPG)
- How to evaluate the quality of test patterns?
 - Fault coverage evaluation
- How to improve test efficiency?
 - Design for Testability (DFT)
- How to apply test patterns?
 - Automatic test equipments (ATE)
 - Built-in self test (BIST)
Functional v.s. Structural Test

- **Functional test**
 - Exercise the functions according to the spec
 - Often require designers’ inputs
 - Large number of patterns with low fault coverage
 - Difficult to be optimized for production tests

- **Structural test**
 - Use the information of interconnected components (e.g., gates) to derived test regardless of the functions
 - Fault modeling is the key
 - Basis of current testing framework---ATPG, Fault simulator, DFT tools, etc.
Fault Models

- Fault modeling is a way to represent the cause of circuit failure.
- Model the effects of physical defects by the logic function and timing
 - Enumeration of real defects is impossible
- Makes effectiveness measurable by experiments
 - Fault coverage can be computed for specific test patterns to reflect its effectiveness
Single Stuck-At Fault Model

- Assumptions:
 - Only One line is faulty
 - Faulty line permanently set to 0 or 1
 - Fault can be at an input or output of a gate

- One of the gate input terminal was mistakenly connected to ground
- Fault: b stuck at 0
- signal b will always be “0”
Logic Gate Basics

OR Gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

AND Gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Only binary values, 0 and 1, will be used. A and B are inputs and G is the output.
Stuck-At Faults Example

Stuck-at 1 Stuck-at 0

Total Faults = \(Nf = 2 \times \text{total number of signals} = 2 \times 7 = 14 \)
A Simple Simulation with Input (ABCD) = (0111)

We use logic simulation to propagate (transfer) input values to outputs.
What if F stuck-at-0 occurs with (ABCD)=(0111)

We use logic simulation to propagate (transfer) faulty values to outputs.
For this case, we say (0111) covers the fault F stuck-at-0.
Other Faults Covered By (ABCD)=(0111)

By performing several logic simulation with faults (fault simulation), we found (0111) covers four faults: C, D, F, and G stuck-at-0.
Fault Coverage of \((ABCD)=(0111)\)

Since \((0111)\) covers four faults: C, D, F, and G stuck-at-0. And total number of faults is 14. We say \((0111)\) has a fault coverage of \(4/14 \approx 28.6\%\)
Fault Coverage of \((ABCD)=(0101)\)

Since \((0101)\) covers four faults: A, C, E, F, and G stuck-at-1. And total number of faults is 14. We say \((0101)\) has a fault coverage of \(5/14 \approx 35.7\%\)
Combined Fault Coverage of (ABCD)=(0111) and (0101)

We know that both vectors cover different faults, so the total number of covered faults are 4+5. Therefore we have a total fault coverage 9/14 ~ 64.3%
Fault Coverage

- **Fault Coverage** \(T \)
 - Is the measure of the **ability of a set of tests** to detect a given class of faults that may occur on the device under test (DUT)

\[
T = \frac{\text{No. of detected faults}}{\text{No. of all possible faults}}
\]

- Fault simulation is used to evaluate fault coverage for test patterns.
Meaning of Fault Coverage

- Our goal in testing is to find **test patterns** to achieve **100% fault coverage**.
- Under the assumption of the fault model (e.g., single stuck-at fault), we’ve done a good job!
 - Remember the problem of testing a circuit with 50 inputs?
 - Remember the problem of numerous defects that can occur in a chip?
- Though single stuck-at fault model is very simple, it is very effective.
 - Other fault models is still needed to further improve chip quality.
Automatic Test Pattern Generation (ATPG)

- Generate test patterns to cover modeled faults automatically.
- A complex process to determine the quality of tests
 - The most time-consuming process in test development
- Very difficult for sequential circuits (circuits has memory elements).
An Example of ATPG for E stuck-at-0

We can have test vectors \((A, B, C, D) = (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)\).

Step 1: assign \(E=1\)

Step 2: assign \(A=1\) and \(B=1\)

Step 3: assign \(F=0\)

Step 4: assign \((C, D) = (0, 0), (0, 1), \text{ or } (1, 0)\)

Finally, we will see \(G=1\) for fault-free circuits, and \(G=0\) for faulty circuits.
The Infamous Design/Test Wall

30 years of experience proves that test after design does not work!

Simulation functionally correct!
We're done!

Oh no!
What does this chip do?!

Design Engineer

Test Engineer
Design for Testability (DFT)

- DFT is a technique to design a circuit to be easily testable
- Add the cost of area/performance, but dramatically reduce cost for tests
- For example, use scan technique to make test generation feasible on sequential circuit.
- A very important step in circuit design to make sure a circuit is testable.
Full Scanned Sequential Logic
---An Example of DfT

Scan_In

Scan_Ena

Test for SA0 fault here.

Scan Flip-Flop
Multiple Design Missions

- Chips have to optimally satisfy many constraints: area, performance, testability, power, reliability, etc.
Definition of BIST

- BIST is a DFT technique in which testing (test generation, test application) is accomplished through built-in hardware features.

- Advantages
 - Better quality
 - Reduce test application time
 - Reduce test development time

- Costs
 - Area increased
 - Circuit performance degrade
 - Yield loss
Tools for Developing Functional Tests (Recap)

- **Specification**
- **Architecture Design**
 - ATPG
 - Fault simulation
- **Chip Design**
 - DFT
 - BIST
- **Fabrication**
 - ATE
 - BIST
- **Test**
Testing and Quality

Quality of shipped part is a function of yield Y and the test (fault) coverage T.

Yield: Fraction of Good parts

Quality: Defective parts Per Million (DPM)

Shipped Parts

Rejects
Defect Level

- Defect Level
 - Is the fraction of the shipped parts that are defective

\[
DL = 1 - Y^{(1-T)}
\]

\(Y\): yield
\(T\): fault coverage
Defect Level v.s. Fault Coverage

(Williams IBM 1980)

High fault coverage → Low defect level
DPM v.s. Yield and Coverage

<table>
<thead>
<tr>
<th>Yield</th>
<th>Fault Coverage</th>
<th>DPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>90%</td>
<td>67,000</td>
</tr>
<tr>
<td>75%</td>
<td>90%</td>
<td>28,000</td>
</tr>
<tr>
<td>90%</td>
<td>90%</td>
<td>10,000</td>
</tr>
<tr>
<td>95%</td>
<td>90%</td>
<td>5,000</td>
</tr>
<tr>
<td>99%</td>
<td>90%</td>
<td>1,000</td>
</tr>
<tr>
<td>90%</td>
<td>90%</td>
<td>10,000</td>
</tr>
<tr>
<td>90%</td>
<td>95%</td>
<td>5,000</td>
</tr>
<tr>
<td>90%</td>
<td>99%</td>
<td>1,000</td>
</tr>
<tr>
<td>90%</td>
<td>99.9%</td>
<td>100</td>
</tr>
</tbody>
</table>

A chip with 100 DPM or below is considered of high quality.
Components of Test Costs (I)

- Determining the costs in each design phase is very important for evaluating different test strategies.

- Cost directly impacted by tests
 - Test equipment
 - Test development
 - Test planning, test program development
 - Test time
 - Time using the equipment to support testing
 - Test personnel
Components of Test Costs (II)

- Other costs associated with tests
 - Design time
 - Chip area (manufacturing costs)
 - Time to Market
 - Product quality
 - Impact a company’s image and sales
Cost Of Testing - The Rule of Tens

<table>
<thead>
<tr>
<th></th>
<th>Cost Per Fault (Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC Test</td>
<td>0.5</td>
</tr>
<tr>
<td>Board Test</td>
<td>5.0</td>
</tr>
<tr>
<td>System Test</td>
<td>50</td>
</tr>
<tr>
<td>Warranty Repair</td>
<td>500</td>
</tr>
</tbody>
</table>
Implications of Rule of Tens

- Early detection can prevent costly diagnosis and replacement later.
- For example, if a bad IC is not detected, the cost to find a board including the bad IC is at least 10 times higher.
Test Economics

- Build an appropriate cost/benefits model based on empirical data of the manufacturing process.
- Evaluate test strategies (DFT; BIST) according to the model.
- Customize the model for each project.
- Follow and review the model closely through careful management.
A Case Study for Test Economics

- A BIST and Boundary-Scan Economics Framework by JOSÉ M. MIRANDA
 - Lucent Technologies Bell Laboratories
 - IEEE Design and Test of Computers, JULY–SEPTEMBER 1997
Conclusions

- Testing is used to ensure a chip’s quality.
- Testing is a complex and expensive task and should be dealt with at early (design) stage.
- Test strategies should be evaluated with a solid and overall economics model.